Soluble adenylyl cyclase mediates bicarbonate-dependent corneal endothelial cell protection.
نویسندگان
چکیده
Cyclic AMP produced from membrane receptor complex bound adenylyl cyclases is protective in corneal endothelial cells (CEC). CEC also express soluble adenylyl cyclase (sAC), which is localized throughout the cytoplasm. When activated by HCO(3)(-), cAMP concentration ([cAMP]) increases by ∼50%. Here we ask if cAMP produced from sAC is also protective. We examined the effects of HCO(3)(-), pH, phosphodiesterase 4 inhibition by rolipram, sAC inhibition by 2HE (2-hydroxyestradiol), and sAC small interfering RNA (siRNA) knockdown on basal and staurosporine-mediated apoptosis. HCO(3)(-) (40 mM) or 50 μM rolipram raised [cAMP] to similar levels and protected endothelial cells by 50% relative to a HCO(3)(-)-free control, whereas 2HE, which decreased [cAMP] by 40%, and H89 (PKA inhibitor) doubled the apoptotic rate. sAC expression was reduced by two-thirds in the absence of HCO(3)(-) and was reduced to 15% of control by sAC siRNA. Protection by HCO(3)(-) was eliminated in siRNA-treated cells. Similarly, caspase-3 activity and cytochrome c release were reduced by HCO(3)(-) and enhanced by 2HE or siRNA. Analysis of percent annexin V+ cells as a function of [cAMP] revealed an inverse, nonlinear relation, suggesting a protective threshold [cAMP] of 10 pmol/mg protein. Relative levels of phosphorylated cAMP response element binding protein and phosphorylated Bcl-2 were decreased in CEC treated with 2HE or siRNA, suggesting that HCO(3)(-)-dependent endogenous sAC activity can mobilize antiapoptotic signal transduction. Overall, our data suggest a new role for sAC in endogenous cellular protection.
منابع مشابه
Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor.
Spermatozoa undergo a poorly understood activation process induced by bicarbonate and mediated by cyclic adenosine 3',5'-monophosphate (cAMP). It has been assumed that bicarbonate mediates its effects through changes in intracellular pH or membrane potential; however, we demonstrate here that bicarbonate directly stimulates mammalian soluble adenylyl cyclase (sAC) activity in vivo and in vitro ...
متن کاملSoluble adenylyl cyclase-dependent microtubule disassembly reveals a novel mechanism of endothelial cell retraction.
Soluble adenylyl cyclase toxins, such as Pseudomonas aeruginosa exoY, generate a cAMP pool that retracts cell borders. However, the cytoskeletal basis by which this cAMP signal retracts cell borders is not known. We sought to determine whether activation of chimeric, soluble adenylyl cyclase I/II (sACI/II) reorganizes either microtubules or peripheral actin. Endothelial cells were stably transf...
متن کاملBicarbonate disruption of the pulmonary endothelial barrier via activation of endogenous soluble adenylyl cyclase, isoform 10.
It is becoming increasingly apparent that cAMP signals within the pulmonary endothelium are highly compartmentalized, and this compartmentalization is critical to maintaining endothelial barrier integrity. Studies demonstrate that the exogenous soluble bacterial toxin, ExoY, and heterologous expression of the forskolin-stimulated soluble mammalian adenylyl cyclase (AC) chimera, sACI/II, elevate...
متن کاملRole of the bicarbonate-responsive soluble adenylyl cyclase in pH sensing and metabolic regulation
The evolutionarily conserved soluble adenylyl cyclase (sAC, adcy10) was recently identified as a unique source of cAMP in the cytoplasm and the nucleus. Its activity is regulated by bicarbonate and fine-tuned by calcium. As such, and in conjunction with carbonic anhydrase (CA), sAC constitutes an HCO(-) 3/CO(-) 2/pH sensor. In both alpha-intercalated cells of the collecting duct and the clear c...
متن کاملBicarbonate-responsive “soluble” adenylyl cyclase defines a nuclear cAMP microdomain
Bicarbonate-responsive "soluble" adenylyl cyclase resides, in part, inside the mammalian cell nucleus where it stimulates the activity of nuclear protein kinase A to phosphorylate the cAMP response element binding protein (CREB). The existence of this complete and functional, nuclear-localized cAMP pathway establishes that cAMP signals in intracellular microdomains and identifies an alternate p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 300 2 شماره
صفحات -
تاریخ انتشار 2011